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Practical estimation methods for linked
employer-employee dataa

Martyn J. Andrewsb , Thorsten Schankc, Richard Upwardd

Abstract: Methods for the analysis of linked employer-employee data are not yet
available in standard econometrics packages. In this paper, we make the fixed-effects
methods developed originally by Abowd, Kramarz, Margolis and others more acces-
sible, where possible, and show how they can be implemented in Stata. To illustrate
these techniques, we give an example using German linked data. There is a caveat:
when the number of plants is prohibitively large and the investigator wants to estimate
the correlation between the worker and firm unobserved heterogeneities, the regression-
based techniques discussed are not feasible. In this version of the paper, we replace
our earlier Two-Step estimator by a Classical Minimum Distance estimator.

Zusammenfassung: Die Analyse von zusammengefügten Personen- und Firmendaten
ist bisher nicht in die Statistiksprogramme integriert worden. In dem vorliegenden
Beitrag werden die ursprünglich von Abowd, Kramarz, Margolis u.a. entwickelten
Analyseverfahren aufbereitet und, sofern möglich, wird gezeigt, wie diese in Stata
implementiert werden können. Die vorgestellten Methoden werden mit einem kom-
binierten Firmen-Beschäftigtendatensatz (LIAB) aus Deutschland veranschaulicht. Es
gibt jedoch eine Einschränkung: sofern die Anzahl der Firmen sehr großist und man
die Korrelation zwischen den unbeobachtbaren Personen- und Firmenheterogenitäten
schätzen möchte, können die in diesem Papier vorgestellten Regressionstechniken nicht
verwendet werden. In dieser Fassung des Papiers wird der in der vorherigen Version
verwendete 2-Stufen-Schätzer durch einen „Classical Minimum Distance“-Schätzer er-
setzt.
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1 Introduction

Labour market outcomes are driven by the decisions of both workers and firms. How-
ever, it is only recently that the analysis of both sides of the market has become possible
using matched (or linked) employer-employee data. There is a growing literature, whose
origins are associated mainly with Abowd, Kramarz and Margolis. In Abowd, Kramarz
& Margolis (1999) (hereafter AKM), they re-examine the whole of issue of persistent
inter-industry wage differentials. Many other labour-market issues have been analysed,
including inter-firm differences in productivity; the effects of hiring, quits and layoffs
on productivity; the impact of new technology on wages; job creation and destruction;
the effects of training; estimates of the cost of worker displacement; and the effects of
unions and collective bargaining.1

Most econometric investigations of labour market issues are based on datasets that are
either supply-side (individual- or household-level datasets) or demand-side (plant- or
firm- level).2 If worker variables are correlated with firm variables, then any study that
ignores information from the other side of the market will produce biased estimates.
Biases also occur if the worker heterogeneity or the firm heterogeneity are correlated
with the observables. For example, in AKM’s (1999) paper ‘High wage workers, high
wage firms’, it is unobservably better workers, in terms of wages, that are assumed to
work in unobservably better firms.

Although there is a growing literature, the analysis of linked employer-employee data is
not yet routine. There are two reasons why this research agenda has not moved on as
quickly as it might. First, matched datasets involve linking together different sources of
official information, and there are often technical, logistic and accessibility constraints
that hinder progress. Second, there are various econometric issues to overcome, which
mean that routine techniques and packages cannot be used. AKM’s papers suggest
these issues are quite technical. The objective of this paper, therefore, is to make these
methods more accessible, where possible, and then show how they can be implemented
in Stata. To illustrate these techniques, we give an example using German linked data,
from the Institut für Arbeitsmarkt– und Berufsforschung, Nürnberg (hereafter IAB).3

A puzzle has emerged, in that the unobserved component of workers’ wages appears
to be negatively correlated with the unobserved component of firms’ average wages.
Apart from AKM’s original study, which reported a positive correlation, all subse-
quent estimates have been negative. Abowd, Creecy & Kramarz (2002) (hereafter
ACK) report that this is because the approximation used in their earlier work gives

1See also Abowd & Kramarz (1999) and Haltiwanger, Lane, Spletzer, Theeuwes & Troske (1999)
for early surveys of the wide range of issues covered in this literature.

2Some datasets ask questions about the other side of the market; for example, a firm identifier and
plant-size is available in the BHPS. Also, in what follows, ‘workers’ and ‘individuals’ are synonyms.

3Hereafter we refer to the data as LIAB: Linked IAB data.
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different estimates when the models are re-estimated with the exact solution developed
subsequently. ACK report correlations of −0.283 for French data and −0.025 for data
from Washington State. Goux & Maurin (1999) find a correlation ranging from +0.01

to −0.32 depending on the time period chosen. Gruetter & Lalive (2003) find a corre-
lation of −0.543 for Austrian data; Barth & Dale-Olsen (2003) report a correlation of
between −0.47 and −0.55. Our own estimates from German data suggest a correlation
of approximately zero.

The paper is organised as follows. In Section 2, we set out the generic model that best
represents the econometrics of fixed-effects models using matched employee-employer
data, and in Section 3 we describe the various methods that can be used to estimate
this generic model. In Section 4, we describe the LIAB data that we use to illustrate
these techniques, which are presented in Section 5. Section 6 concludes.

2 A generic model

Consider the following model with both employer and employee heterogeneity and
employer and employee covariates:

yit = µ + xitβ + wjtγ + uiη + qjρ + αi + φj + εit (1)

There are i = 1, . . . , N workers (N is often millions) and j = 1, . . . , J firms (J is often
thousands); yit is the dependent variable; xit and ui are vectors of observable i-level
covariates; wjt and qj are vectors of observable j-level covariates; and αi and φj are
(scalar) unobserved heterogeneities, correlated with observables and each other. Note
that both αi and ui are variables that are time-invariant for workers and similarly φj

and qj are fixed over time for firms. xit, on the other hand, varies across i and t, and
wjt varies across j and t. (There is more on use of j subscript below.) Equation (1)
therefore contains all four possible types of information which a researcher might have
about workers and firms. There are K observed covariates in total.

Both workers and firms are assumed to enter and exit the panel, which means we
have an unbalanced panel with Ti observations per worker. There are N∗ =

∑N
i=1 Ti

observations (worker-years) in total. Workers also change firms. This is crucial, as
fixed-effects methods are identified by changers. In this paper, we assume εit is strictly
exogenous, which implies that workers’ mobility decisions are independent of εit. It is
worth noting that mobility may be a function of the observables and the time-invariant
unobservables.

Suppose the investigator only has access to worker (or household) data, and therefore
considers estimating

yit = µ + xitβ + uiη + αi + φj + εit.
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If the investigator does not observe the vector [wjt,qj] then the estimates of [β,η]

are biased if the vector [xit,ui] is correlated with these missing firm-level variables.
However, he can still control for φj providing he knows the identity of the firm, as
there are multiple observations on workers within the same firm, which means that
there are no biases arising from φj being correlated with any of the observables. Now
suppose the investigator only has access to a single cross section. Clearly, he can still
control for φj, but now he cannot control for αi as it now part of the error term αi + εi.

Now suppose the investigator has only firm-level data, and considers estimating:

yjt = µ + wjtγ + qjρ + φj + αjt + εjt.

Now the unit of observation is a firm, which means that [yjt, αjt, εjt] are averages over
each firm’s employees. If everything were observed, including the vector of worker-level
variables [xjt,uj] (eg average age of the firm’s employees, or the proportion of males
in the firm), then the aggregation of variables would just cause heteroskedasticity.
However, not observing [xjt,uj] causes bias if these variables are correlated with the
vector [wjt,qj]. However, we can control for φj using firm-level fixed effects methods,
but we cannot control for αjt, because it is part of the error term αjt + εjt. This is
the well-known aggregation bias caused by having firm-level rather than worker-level
data.4 To conclude, without linked data, there are obvious biases from not observing
observables, and from not controlling for unobservables.

Turning back to Equation (1), we emphasise that it is usual to assume that the hetero-
geneity terms αi and φj are correlated with the observables. This means that random
effects methods are inconsistent, and so fixed effects methods are needed to estimate
the parameters of interest. This, in turn, means that [ρ, η], the parameter vector
associated with the time-invariant variables, is not identified. Rather than dropping
[ui,qj], it is usual to define

θi ≡ αi + uiη (2)

and
ψj ≡ φj + qjρ (3)

giving
yit = µ + xitβ + wjtγ + θi + ψj + εit. (4)

Estimates of [η,ρ] can be recovered by making the additional random effects assump-
tions Cov(ui, αi) = Cov(qj, φj) = 0. Hausman & Taylor (1981) show that it is possible
to identify time-varying effects using fixed-effects methods whilst identifying non-time-
varying effects using random-effects methods in the same regression. However, some in-

4Early estimates of the union wage differential in the UK came from plant-level data (WIRS),
which typically did not have important information on the employees’ backgrounds.
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vestigators may be unhappy about having different assumptions depending on whether
the variable is time-invariant, or otherwise, so in everything that follows, we consider
the identification of [η,ρ] as an optional extra rather than part of the main story.

3 Econometric methods

Equation (4) is the generic model that represents most of the existing literature. A
number of fixed-effects methods have been proposed in the literature. In what fol-
lows, we describe each. Code that illustrates how each can be implemented in Stata
(StataCorp 2003) is available from
http://www.nottingham.ac.uk/economics/staff/details/richard_upward.html.

3.1 Least squares dummy variables (LSDV)

AKM are the first to propose consistent estimates of the parameters of Equations (1–4).
It needs emphasising that they are particularly interested in estimating θi and ψj, in
addition to [β,γ], for two reasons. The first is that they want to see whether estimates
of θi and ψj are correlated, hence the title ‘High wage workers, high wage firms’. The
second is that they want to recover estimates of ρ and η using Equations (2) and (3)
respectively. Because the heterogeneity variables are assumed to be correlated with the
observables, they note that the Least Squares Dummy Variables (LSDV) estimator has
the best properties, for the usual reasons. The LSDV estimates of αi are inconsistent,
although unbiased. (See Wooldridge (2002, ch. 10) for assumptions and properties of
panel data models.) The properties of the ψj are the same as for [β,γ], the parameters
associated with the time-varying covariates [xit,wjt].

There are two potential problems with actually computing this LSDV estimator. It
is well known that a model with individual and time dummies (Baltagi’s Two Way
Fixed Effects Model, Section 3.2) gives algebraic solutions for the estimates of the
effects of the covariates and both sets of dummies. Essentially, there is a matrix that
sweeps out both sets of dummies in one go, which means that a regression involving
transformed variables is performed. For the model here, there are two important
differences. First, in Baltagi the data are balanced, whereas here both workers and
firms can enter and exit the panel. Wansbeek & Kapteyn (1989) analyse Baltagi’s
model for unbalanced data, and obtain inelegant expressions that involve generalised
inverses. Second, there is not a regular pattern between the firm and worker dummies
as there is between Baltagi’s individual and time dummies. It is the second that is
the important difference, because it means that there is no algebraic transformation of
the observables that sweeps away both heterogeneity terms in one go and which allows
them to be recovered subsequently. To circumvent this second problem, AKM note
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that explicitly including dummy variables for the firm heterogeneity, but sweeping out
the worker heterogeneity algebraically, gives exactly the same solution as the LSDV
estimator.5

More precisely, the investigator must generate a dummy variable for each firm:

F j
it = 1(j(i, t) = j) j = 1, . . . , J,

where 1( ) is the dummy variable indicator function and the function j(i, t) = j maps
worker i at time t to firm j. Now substitute

ψj(it) =
J∑

j=1

ψjF
j
it (5)

into Equation (4).6 The θi are removed by time-demeaning (or differencing) over i:

yit − ȳi = (xit − x̄i)β + (wjt − w̄i)γ +
J∑

j=1

ψj(F
j
it − F̄ j

i ) + εit, (6)

where z̄i =
∑

t zit/Ti for any variable z. This means that J de-meaned (or differenced)
firm dummies actually need creating.7 To distinguish this estimator from LSDV above,
hereafter we label this estimator FEiLSDVj. They are identical estimators, but differ
in how they are computed. The covariance matrix for FEiLSDVj needs the standard
degrees-of-freedom adjustment, the formula for which is given in the next subsection.

We should note that (F j
it − F̄ j

i ) will be zero for all J dummies for any worker i who
does not change firm. Furthermore, if we have a sample of firms—rather than the
population, as in AKM’s studies—it will only be non-zero for workers who change
from one firm within the sample to another firm in the sample. This means that for
samples such as the LIAB, only a tiny proportion of workers have any non-zero terms.
Identification of ψj is driven by the total number of such movers in each firm j. Some
small firms may have no movers, in which case ψj is not identified. Other small firms
may have only a very few movers, in which case estimates of ψj will be very imprecise.
This means that it may be not be sensible to estimate ψj for small firms, and instead
one should group small firms together (this is what AKM and others do.)

5In linear models, there is no distinction between removing the heterogeneity algebraically or adding
two full sets of dummy variables, for workers and firms, and so the terminology LSDV applies to both.

6Equation (5) shows that it would be better to use non-Greek letter for heterogeneity ψj(it), because
it is a variable, not a parameter.

7Differencing is ignored hereafter. There are various reasons why it is easier to implement the
covariance transformation. Normally, the decision whether to estimate the model in first differences
or use the covariance transform depends on which give the more efficient estimates. Both estimators
are consistent. See Wooldridge (2002, Section 10.6.3).
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To obtain estimates of the heterogeneity, first compute

ψ̂j(it) =
J∑

j=1

ψ̂jF
j
it (7)

and then
θ̂i = ȳi − ψ̂i − x̄iβ̂ − w̄iγ̂ (8)

where ψ̂i averages ψ̂j(it) over t.

There are two potential computational problems with this estimator. The first is
the number of firms J , because the software needs to invert a matrix of dimension
(K + J) × (K + J). For many applications, the number of firms is sufficiently small
that FEiLSDVj is computationally feasible. For example, StataSE inverts 11,000 x
11,000 matrices. In our own empirical work, for reasons explained below, we only need
to add approximately 2,000 firm dummies. There are many other situations where the
number of firms/schools/doctors is sufficiently small. However, some datasets have tens
of thousands of firms, or even hundreds of thousands (for, example, AKM and ACK).
The second is the requirement that one must create and store J mean-deviations for N∗

observations, meaning that the data matrix is N∗×(K +J). This may be prohibitively
large for software packages which store all data in memory, such as Stata.

Some improvement in the storage efficiency of the J mean-deviated firm dummies
can be achieved in Stata by using the lowest common multiple of all values of Ti.
For example, if the data span a maximum of 5 years then Ti can be any value from
[1, 2, 3, 4, 5]. Multiplying F j

it − F̄ j
i by the lowest common multiple (in this case 60)

yields a set of integers which can be stored in Stata as single bytes rather than 4- or
8-byte fractions.8

The memory requirements of the data matrix for the FEiLSDVj estimator are then
approximately (N∗J)+4[N∗(K+1)] bytes. We require N∗J bytes for the mean-deviated
firm dummies and 4[N∗(K + 1)] bytes for the remaining K explanatory variables and
the dependent variable, assuming each is stored as 4-bytes. In our example we have
N∗ = 5, 145, 098, J = 1, 821 and K = 64, meaning that we require about 10GB of
memory to proceed.

It is worth emphasising that firm dummies are no different from any multi-category
dummy, so long as workers can move from one category to another over time (eg region
dummies, but not ethnicity dummies). This is why the notation wjt and qj is possibly
confusing, since both are defined over every row indexed it. (Note that AKM use the
notation J(i, t) to denote the mapping from worker i at time t to the firm j in which

8Storing the mean-deviated firm dummies as integers also appears to improve the accuracy of the
matrix inversion procedure.
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they are employed.) This means that the index j refers to the level of aggregation that
wjt actually varies over.

Identifying the unobserved firm effects

An important issue is establishing how many unique unobserved firm effects can be
identified. First, effects cannot identified for firms which have no turnover; otherwise,
F j

it − F̄ j
i = 0. These comprise a total of J2 firms out of a total of J . Second, note that

the firm dummies, when in mean-deviations, form a collinear set of variables

J∑
j=1

(F j
it − F̄ j

i ) = 0.

This is simply a consequence of having a collinear set of firm dummies, which sum to
the constant before forming mean-deviations, and therefore sum to zero afterwards. In
such a situation, one drops one of the firm dummies.

However, there is an additional identification issue, discussed by ACK. Identification of
firm effects is only possible within a ‘group’, where a group is defined by the movement
of workers between firms. A group contains all the workers who have ever worked for
any of the firms in that group, and all the firms at which any of the workers were
employed. A second (unconnected) group is defined only if no firm in the first group
has ever employed any workers in the second, and no firms in the second group have
ever employed any workers in the first. If there are G1 separate groups of firms, then
it is not possible to identify one firm per group for the reason above. Thus the total
number of firms whose effect cannot be estimated is G = G1 + J2.

ACK conclude that the number of estimable/identified firm effects is J −G, and that
the number of estimable/identified person effects is N , where N is the number of
workers observed twice or more. Thus the correct degrees of freedom when estimating
Equation (4) is N∗ − K − (J − G) − N . When estimating Equation (6), the actual
correct degrees of freedom are N∗ − K − (J − G), and so estimated standard errors,
both robust and non-robust, need scaling by

√
N∗ −K − (J −G)

N∗ −K − (J −G)−N
. (9)

A second implication of the grouping of firms is that estimates of ψ̂j cannot be directly
compared across groups. This is because it is arbitrary which ψj is set equal to zero
for normalisation in each group. The same issue applies to the resulting θ̂i. ACK
suggest making the additional assumption that the average firm effect is the same
across groups.
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We have implemented the grouping algorithm in Stata, available from
http://www.nottingham.ac.uk/economics/staff/details/richard_upward.html.

Identifying the effects of time-invariant variables

If the investigator can implement the LSDV estimator on i- de-meaned data (FEiLS-
DVj), or implement one of AKM’s other methods (discussed briefly below), AKM
suggest that one can recover estimates of α̂i and φ̂j by estimating Equations (2, 3) as
follows. First, run the auxiliary regressions:

θ̂i = const + uiη + error (10)

ψ̂j = const + qjρ + error (11)

which give consistent estimates of η, ρ (AKM 1999, Section 3.4.4). Because αi is
dropped from (2), the identifying assumption is that Cov(ui, αi) = 0 or else there is
omitted variable bias. Similarly, Cov(qj, φj) = 0 is assumed in (3). One only needs N

observations to estimate (2) and J observations to estimate (3). AKM estimate these
equations by GLS, because of the aggregation to the firm-level. Because there are other
causes of heteroskedasticity, one could use OLS and adjust the covariance matrix for
clustering at the firm-level. Second, the investigator computes

α̂i = θ̂i − uiη̂ (12)

φ̂j = ψ̂j − qjρ̂. (13)

θ and ψ can be defined at three levels of aggregation:

i, t θi replicated Ti times ψj(i,t)

i θi ψ̄i =
∑Ti

t=1 ψj(it)/Ti

j θ̄j =
∑

(it)∈j θi/Nj ψj

(Nj is the total number of worker-years observed in firm j.) AKM show that statistics
based on aggregating θ̂i and α̂i to the level of the firm are consistent as Ti goes to
infinity (see also Chamberlain 1984). To conclude, one can analyse distributions of ψ̂j,
θ̂i, specifically to see whether they are correlated.



11

3.2 AKM’s approximate methods

To deal with the large number of firm dummies, AKM propose a number of techniques
in their (1999) paper that reduce the dimensionality of the problem. These require
imposing further (testable) orthogonality assumptions. We do not discuss these further
because ACK have recently developed a numerical solution for the LSDV estimator
above.

3.3 ACK’s Direct Least Squares (DLS)

ACK, in addition to providing a more accessible discussion of their earlier papers,
provide a numerical solution to the LSDV estimator of (1). They call it a Direct Least
Squares Algorithm. They also make it clear that these methods are only relevant if one
wants to estimate the heterogeneities. Finally, they re-estimate their original models on
Washington and French data, and show that the AKM approximate methods reported
in their (1999) paper give poor results for the French data. Their solution involves an
iterative technique that does not look easy to implement in standard software such as
Stata.9 More importantly, it is not regression based. The software is available from
Abowd’s website http://instruct1.cit.cornell.edu/~jma7/abowdcv.html.

3.4 Spell Fixed Effects

If one is not interested in the estimates of θi and ψj themselves, consistent estimates
of β and γ from Equation (4) are straightforward to obtain by taking differences or
by time-demeaning within each unique worker-firm combination (or ‘spell’). This is
because for each spell of a worker within a firm neither θi nor ψj vary. Defining
λs ≡ θi + ψj as spell-level heterogeneity, which is swept out by subtracting averages at
the spell-level, both θi and ψj have disappeared:

yit − ȳs = (xit − x̄s)β + (wjt − w̄s)γ + (εit − ε̄s). (14)

Again, the effects of u and q are not identified, because ui − ūs = 0 and qj − q̄s = 0.
In addition, any variable xit or wjt which is constant within a spell will also not be
identified. One observation per spell is used up in identifying each spell fixed effect.10

This is basically the method that AKM discuss in Section 3.3, except they use dif-
ferences rather than mean-deviations. AKM do not label this technique, so we call it

9Gruetter & Lalive (2003) also have an iterative technique, but it does not provide a covariance
matrix.

10If there is just one observation per spell, then yit − ȳs = 0, xit − x̄s = 0, wjt − w̄s = 0. This
‘singleton’ result can used to reduce the sample size.
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Spell FE or FE(s). AKM state that it is consistent, inefficient, and “cannot be used to
identify separately the firm intercept . . . and the person effect”. It is clearly consistent
as all the heterogeneity has been removed, and it is not the most efficient estimator
because LSDV is. Because one cannot separate the worker and firm heterogeneities,
AKM do not pursue this method further.

As when estimating any fixed-effects model, the standard errors may need correcting
for the number of spells that the software has ‘forgotten’ about11

√
N∗ −K

N∗ −K − S
.

Unfortunately, given estimates of λ̂s, one cannot recover θ̂i and ψ̂j. Even if S > N +J ,
so that one could regress λ̂s on worker and firm dummies, all that has happened is that
β has been partitioned out of the problem, reducing the size of the problem by just K.

It is worth emphasising, however, that for many researchers this ‘spell fixed effects’
method is a practical and simple solution which does not present any computational
difficulty, providing the investigator is not interested in analysing the heterogeneity
post-estimation.

Spell FE is trivial to implement in Stata (again see our Stata code).

Identifying the effects of time-invariant variables: Spell FEIV

We develop this method further to estimate the effects of time-constant variables u and
q, which get swept away being constant within a spell. Consider the standard one-way
fixed-effects model (say, using worker-level data only)

yit = µ + xitβ + θi + uit. (15)

The standard FE estimator of β can be interpreted as an IV estimator (Verbeek 2004,
Section 10.2.5):

β̂FE = [ΣiΣt(xit − x̄i)
′(xit − x̄i)]

−1ΣiΣt(xit − x̄i)
′(yit − ȳi)

= [ΣiΣt(xit − x̄i)
′xit]

−1ΣiΣt(xit − x̄i)
′yit

xit − x̄i is an ideal IV for any scalar xit because: (i) it is uncorrelated with the unob-
servable θi, and (ii) it is correlated with xit.

This implies one can estimate Equation (15) by IV GLS with xit − x̄i as an IV for xit.
The other extreme case uses xit as an IV, which generates the random effects estimator.

11Stata has a command areg which does not need this correction. Also, it can correct the standard
errors for clustering, which, in this context, should be at the firm level.
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The objective here is to estimate the parameters of Equation (1), not Equation (4).
The above argument implies that it is possible to estimate the parameters on the time-
varying variables by time-demeaning them, and to estimate the parameters of the
time-invariant variables using random effects. This approach can be thought of as ‘in
between’ the FE estimator (which cannot estimate the parameters on time-invariant
variables) and the RE estimator (which does not allow for any correlation between
the time-varying variables and the unobservable heterogeneity). All variables that are
correlated with unobservables (xit, wjt) are instrumented by their mean deviations
xit− x̄s and wjt− w̄s respectively. This is not possible for the time invariant variables,
(u, q), which can only be instrumented by themselves, which means we are assuming
that Cov(ui, αi) = 0 and Cov(qj, φj) = 0. In other words we are making exactly the
same assumptions for u and q as we have done throughout, which is why Spell FEIV
is a side-issue. This is a special case of Hausman & Taylor’s (1981) estimator.

3.5 A Classical Minimum Distance (CMD) method

The main problem with the FEiLSDVj estimator is that it requires the inversion of a
(K + J) × (K + J) cross-product matrix. As noted, in some cases J may be only a
few thousand, and so the estimator is feasible. This is particularly true where we have
a sample of firms, and if we only attempt to identify the firm effects for larger firms.
There is another constraint however, which is the sheer number of observations, even
when J is sufficiently small. This is because the data matrix is N∗ × (K + J), and
might be prohibitively large for software packages that store data in memory rather
than on disk. To circumvent this problem, we propose the following method, based on
the fact that only movers between firms identify firm effects.12

We separate the model into observations for movers, subscripted by “1”, and non-
movers, subscripted by “2” by sorting the data by t within i. There are N∗

1 mover-
observations and N∗

2 non-mover-periods. We then write Equation (4) in matrix nota-
tion, where each model is estimated separately:13

ỹ1 = X̃1β1 + F̃1ψ1 + ε1 (16)

ỹ2 = X̃2β2 + ε2. (17)

Note that ỹ1, ỹ2, X̃1, X̃2 and F̃1 have all been mean-deviated and defined viz ỹ1 =

MDy1 etc, where MD ≡ I−D(D′D)−1D′. Denote the variances of the two error terms
as σ2

ε1 and σ2
ε2. We now drop all columns of F̃1 that are the zero vector, that is the J2

12This replaces a method we proposed in earlier versions of this paper, which we labelled a Two-
step Method. This earlier method ignored the sampling error associated with estimating ψ̂ and so
computed standard errors that are too small.

13We dispense with the distinction between xit variables and wjt variables.
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firms that have no turnover. By definition, F̃2 ≡ 0.

Because there are often very few movers, eliminating F̃2 ≡ 0 from the model means
that, by estimating the model for movers and non-movers separately, the memory con-
straints noted above are sided-stepped.14 The Classical Minimum Distance (CMD) es-
timator forms a restricted estimator for β and ψ from β1, β2 and ψ1. (See Wooldridge
(2002, ch. 14.6) for further details.)

In general, denote π as the S × 1 unrestricted parameter vector and denote δ as the
P × 1 restricted parameter vector. The constraint is π = h(δ). In CMD estimation,
one estimates π and then finds a δ such that the distance between π̂ and h(δ) is
minimised. An efficient CMD estimator uses any consistent estimator of asymptotic
covariance matrix V to act as weighting matrix for the distance between π̂ and h(δ),
denoted V̂. In other words, Efficient CMD solves:

minδ[π̂ − h(δ)]′V̂−1[π̂ − h(δ)],

whose solution is
δ̂ = (H′V̂−1H)−1H′V̂−1π̂,

when the mapping from δ to π is linear: π = Hδ. Also, the appropriate estimator of
Âvar(δ̂) with which to conduct inference is

Âvar(δ̂) = [H′Âvar(π̂)−1H]−1 = [H′V̂−1H]−1.

A test of the validity of the restrictions is given by Wooldridge (2002, Eqn. (14.76)):

[π̂ − h(δ̂)]′V̂−1[π̂ − h(δ̂)] ∼ χ2(S − P ).

For the model at hand, the constraint π = Hδ is written:




β1

ψ1

β2


 =



IK 0

0 IJ

IK 0




(
β

ψ

)

where π is (2K + J)× 1, δ is (K + J)× 1, and H is (2K + J)× (K + J).
14There are good reasons for treating these as separate models. In models of assortative matching,

it is possible that the correlation between observed and/or unobserved components might be higher
for movers compared with non-movers.
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The appropriate asymptotic covariance matrix is:

V̂ =

[
V̂1 0

0 V̂2

]
=




σ̂−2
1

(
X̃′

1X̃1 X̃′
1F̃1

F̃′1X̃1 F̃′1F̃1

)
0

0

0 0 σ̂−2
2 (X̃′

2X̃2)


 .

Given the general expressions immediately above, it follows that the restricted estima-
tor δ̂ = [H′V̂−1H]−1H′V̂−1π̂ is given by:

δ̂ =

(
β̂

ψ̂

)
=

[
V̂−1

1 +

(
V̂−1

2 0

0 0

)]−1 [
V̂−1

1

(
β̂1

ψ̂1

)
+

(
V̂−1

2 β̂2

0

)]
(18)

and that

Âvar(δ̂) = [H′V̂−1H]−1 =

[
V̂−1

1 +

(
V̂−1

2 0

0 0

)]−1

, (19)

a (K + J) × (K + J) matrix. It should be emphasised that these expressions use
standard (unrobust) covariance matrices. A robust version of this covariance matrix
replaces V̂1 and V̂2 in Equation (19) by robust equivalents.

A standard criticism is that movers and non-movers are different groups of individuals
and so one should model them separately. Before imposing H0 : β1 = β2, one should
test these restrictions, although this rarely happens. Under H0:

(
β̂1 − β̂

ψ̂1 − ψ̂

)′

V̂−1
1

(
β̂1 − β̂

ψ̂1 − ψ̂

)
+ (β̂2 − β̂)′V̂−1

2 (β̂2 − β̂) ∼ χ2(K). (20)

Finally, given estimates ψ̂j(i,t), one obtains estimates of θ̂i using Equation (8) above.

It should be emphasised that the only price paid with this approach is that one cannot
constrain σ2

ε1 = σ2
ε2. The only difference between this and the LSDV estimator is

because V̂−1
1 and V̂−1

2 come from separate regressions.

3.6 A road map?

To conclude the discussion of the methods discussed in this section, we outline a flow
chart that should help the investigator decide which method is appropriate for his
needs.

1. Does the investigator want to estimate employer and employee heterogeneity?

No Use Spell-level FE

Yes . . .
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2. Are there too many firm dummies to add ‘by hand’?

Yes Use AKM techniques

No . . .

3. Is there enough memory?

Yes Use (transformed) firm dummies (FEiLSDVj)

No Use the CMD method

For all methods, one can recover estimates on ui and qj making standard RE assump-
tions. The Stata code for estimating all of the models outlined in this section, apart
from ACK’s Direct Least Squares, is available from
http://www.nottingham.ac.uk/economics/staff/details/richard_upward.html.

4 The data (LIAB)

The IAB establishment panel (Betriebspanel)

The IAB (Institut für Arbeitsmarkt– und Berufsforschung) collect their own demand
side data: the Betriebspanel is an establishment panel of ≈ 8, 000 establishments lo-
cated in the former West Germany and ≈ 8, 000 establishments in the former East
Germany.15 It covers the period 1993–present (1996–present for East Germany) and
covers 1% of all plants and 7% of all employees in the population. The establishments
are selected using a fairly complicated weighting procedure. (See Kölling (2000) for
full details on the Betriebspanel.) Information on each establishment includes:16

• Total employment (also disaggregated) (size1-size10)

• Standard hours (lhbar) and overtime hours

• Wage recognition (B,B1,B2)

• Output

• Exports

• Investment (inv)

• Wage bill
15Because these are establishments, not firms, we dispense with the latter terminology hereafter.

Establishments and plants are synonyms.
16If variables are used in tables below, their acronyms are also given. For full definitions, see Table 3.
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• Urbanicity (urban1-urban10)

• Geographical location

• Nationality of ownership (foreign in 2000)

• Technology (subjective measure)

• Organisational change (subjective measure)

• Profitability (profit1-profit5)

• Age of plant (vin) and whether parent is a single-plant firm (single)

The employment statistics register (Beschäftigtenstatistik)

On the other side of the labour market, the IAB has access to the employment statistics
register (Beschäftigtenstatistik). It is an administrative panel of all employees who are
covered by the social security system (about 80% of total employment), and is collected
by the plant. There is at least one compulsory notification during each calendar year. It
covers 1975–present for West Germany and 1992-present for East Germany. It contains
about 400 million records, covering about 46 million employees. (See Bender, Haas &
Klose (2000) for full details on the Beschäftigtenstatistik.) Information on each worker
includes:

• Gender (female), age (age), nationality (foreign), marital status (married)

• Start and end dates of every employment spell (mjob for more than one job)

• Occupation (3-digit) (occ1-occ6)

• Daily wages (left truncated and right censored) (lw, but see below for more
information)

• Qualifications: education/apprenticeship (qual1-qual6)

• Industry (ind1-ind10)

• Region

• Establishment identification number
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The linked IAB employer-employee data (LIAB)

By using the establishment identification number, the IAB are able to associate each
worker in the Beschäftigtenstatistik with an establishment in the IAB panel. Note that
it is also possible to aggregate up all workers (not just those employed by establishments
in the panel) to the establishment level. The particular dataset we use for this study
was created by selecting all employees in the employment register who are employed
by the surveyed establishments on June 30th each year.

Sample used for wage equations

To illustrate the techniques outlined above, we estimate various standard wage equa-
tions. The sample we use covers 1993-1997, that is 1 ≤ Ti ≤ 5, and is for West Germany
only. We also drop observations for apprentices, part-timers, homeworkers and those
with a daily wage of less than 10 DM . In addition, the data are right-censored.17 As
always, we also drop observations with missing values.

Workers change plants, and in particular, can change between plants that are surveyed
in the IAB panel and plants that are not. In this study, we keep only those years (it
rows) when a worker is working in an IAB-panel plant. This is because we do not
observe wjt or qj in those years when a worker is working for a non-IAB plant. Table 1
summarises the data, in exactly the same format used by AKM.

[TABLE 1 ABOUT HERE]

Identification of unobserved plant-effects is driven only by those workers who change
plants. Thus an important sub-sample comprises those workers who have two or more
spells (Si > 1) in IAB plants (‘IAB movers’). In Table 1, workers who return to the
same employer after an intervening spell with another employer are coded as starting a
new spell. In Section 3.4, a spell is defined as any unique worker/employer combination,
and so all periods a worker spends with a given employer are coded as a single spell.
This is why there are 1,954,242 spells in Table 1 but only 1,953,774 spells in the
regression sample.18 This, and the sample of IAB movers, is summarised in Table 2.

Is the sample of IAB movers representative of the whole sample? As already discussed,
the IAB-panel plants over-represent large plants in the population, and so workers in
IAB plants are not a random sub-sample of the population. It is also possible that
the 23,393 workers who move between IAB plants may not a random sub-sample of
1,930,260; exactly the same issue arises in all panel data models, which rely on movers

17In a paper that is concerned with methods, this is not as issue, although one could deal with this
in the same way as Gruetter & Lalive (2003, p.6).

18The 1,954,242 spells in Table 1 is calculated as 1,906,867 plus 2*22,806 plus 3*385 plus 4*2.
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for identification. (For example, estimates of union wage differentials based on a sample
of joiners/quitters.)

Table 3 reports sample means: the first three columns average by workers whereas
columns four to six average by plants. For example, in column one, the regression
sample, 22.95% of workers are female whereas, on average, each plant employs 34.76%
females (column four). These sets of means are often different from each other because
of the underlying nature of the plant-size distribution. Workers are much more likely to
work for large plants rather than small plants. Because large plants have higher wages,
average log earnings are much smaller in column four than in column one. There are
also big differences in sample means for whether married, qualifications, industry, union
bargaining, investment and the age of the plant.

Column two corresponds to column one, but for the 23,393 workers who move between
IAB plants. The difference between columns one and two is in column three. Column
five corresponds to column four, but for the 1,821 plants that experience ‘IAB turnover’,
that is employ workers who move between IAB plants. The difference between columns
four and five is in column six. As we only identify 1,821 plants out of 4,376, the obvious
question is whether these plants are observably the same, on average, as the 4,376? The
same question applies to whether the 23,393 movers are observably the same as the
1,930,260 workers. In fact, the 1,821 plants pay lots more (0.1678 log-points), employ
fewer females, employ more married workers, tend to be bigger firms located in different
industries, and invest more (column six). Looking at individual workers, movers only
get slightly more pay (0.0327 log-points), are younger, are less likely to be women,
are more highly qualified, and are employed at plants with lower investment (column
three).

[TABLE 3 ABOUT HERE]

Even if this sub-sample is not random, it does not follow that the estimates of 1,821 ψ̂j

are inconsistent. This depends on what causes movement. If based on match quality,
say f(α, φ), then estimates are consistent because α, φ are swept away. However, it
is a strong assumption to suggest that movement is independent of ε; any shock that
affects workers and firms suggests that movement and ε are correlated.

We conclude this discussion on the identification of unobserved plant-effects by counting
the number of movers for each plant. Figure 1 plots the cumulative frequency for the
number of plants against the number of movers. For example, one plant has 1,886
movers, but 472 plants only have one mover, and 2,555 plants have no movers at
all. This is a very skewed distribution, and is a feature of linked employee-employer
datasets. The IAB panel is a 1% sample of plants. Even though it is a large sample, the
probability of observing a worker moving from one IAB plant to another is very small.
Even if one observed the population of plants, very small plants would experience little
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or no turnover in a five-year period, making estimation of their ψj very noisy.

One possible strategy the investigator might adopt is to only identify ψj for plants
with more than x movers, and group all remaining small plants into one plant (Abowd
et al. 2002). Using Figure 1, we set x = 30, giving 211 large plants and one small plant
(albeit with a lot of employees). To conclude, it is important for the investigator to
be aware of how little information is sometimes used to identify each unobserved plant
effect, especially if plants are small.

5 Results

[TABLE 4 ABOUT HERE]

Table 4 reports three conventional models, so described because they control for het-
erogeneity from only one side of the market, at best. The first is labelled Pooled OLS,
which is Equation (1) where neither αi nor φj are controlled for, of which there are
three variants. The first only includes worker-level covariates, the second only plant-
level covariates, and third includes both sets. The idea here is to assess the extent to
which estimates on worker-level covariates are affected by the absence of plant-level
covariates, and vice versa—in other words, to assess the extent to which the two sets
of covariates are correlated with each other. A comparison of the estimates shows
that the estimates do change, but not by much. The plant-level covariates move more,
which is expected, given their standard errors are generally bigger.

The second model is labelled FE(i), i.e. the worker-level heterogeneity θi is controlled
for, but φj becomes part of the model’s error term:

yit = µ + xitβ +wjtγ + qjρ + θi + (φj + εit)

Notice that the effects of the time-invariant worker-level variables ui are not identified,
namely foreign and female. The extent to which an estimate moves compared with
Pooled OLS (previous column) depends on the extent to which θi is correlated with
observed covariates. Here there are some large movements. Notice that Stata reports
an estimate of the correlation between the deterministic part of the regression and
θi (‘corr(ui,Xb)’), and there is very strong negative correlation of –0.66, which is a
different manifestation of the same thing.19

The third model is labelled FE(j)

yit = µ + xitβ + wjtγ + uiη + ψj + (αi + εit)

19‘corr(ui,Xb)’ varies from model to model. For FE(i), it is the correlation between θ̂i and xitβ̂ +
wjtγ̂ + qjρ̂.
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Now the plant-level heterogeneity ψj is controlled for, but αi becomes part of the
model’s error term. The effects of the time-invariant plant-level variables qj are not
identified, namely industry dummies and a dummy for whether the plant is single.
This is not a model that one would normally estimate, but is useful if the investigator
cannot control for both ψj and αi simultaneously, because it at least indicates the
extent to which ψj is correlated with the observed covariates. Here the correlation
between ψj and the deterministic part of the model is much weaker, and positive, at
0.08.

What is missing, of course, is that we do not control for any correlation of both un-
observed fixed effects, φj and αi, with observable characteristics. Table 5 reports two
models that do exactly this.

[TABLE 5 ABOUT HERE]

The first of these is FE(s), the easy-to-use technique that removes spell-level hetero-
geneity (Section 3.4 above). The effects of all time-invariant covariates are not identi-
fied, but the estimates of the time-varying covariates are consistent. If the investigator
is not interested in estimating the worker- and plant- heterogeneities, he can stop here.
Comparing these estimates with Pooled OLS and FE(i) in the previous table is of some
considerable interest, as these are the better estimates. Notice that the correlation be-
tween the deterministic part of the regression and λs is -0.56, which is approximately
equal to the sum of those from FE(i) and FE(j). Given that λs = θi + ψj, this is not
surprising. The IV version that estimates the effects of time-invariant variables, under
the extra assumptions Cov(ui, αi) = Cov(qj, φj) = 0, is reported in the second column.
The estimates of the time-varying covariates are virtually identical.

Following the ‘road-map’ outlined in Section 3.6, the next decision is to ascertain
whether there are too many plant dummies to add ‘by hand’ when estimating Equa-
tion (6). This technique, if feasible, is labelled FEiLSDVj. ‘By hand’ means that
dummies for each plant are explicitly added to the regression like any other covariate;
that is, cannot be dealt with algebraically. In the models being estimated here, we
have 5,145,098 observations, and need J1 = 1, 821 plant dummies, these being those
plants which have IAB turnover, i.e. movers to/from another IAB plant. The memory
needed is too prohibitive. As discussed on Page 8, we consider implementing the trick
whereby we multiply the dummies by 60 so that they are stored as single bytes. This
didn’t work: we have N∗ = 5, 145, 098, J1 = 1, 821 and K = 64, meaning that we still
require about 10GB of memory to proceed.

Thus the only way forward is to use the CMD method outlined in Section 3.5. This is
the second model in Table 5. There are N1 = 23, 393 movers (N∗

1 = 72, 353 observa-
tions) and N2 = 1, 906, 867 non-movers (N∗

2 = 5, 072, 845 observations). Even though
there are J = 4, 376 plants, we can only estimate effects for J1 = 1, 821 plants, because
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the rest experience no IAB-turnover. In addition, another G1 = 33 effects cannot be
identified, for one plant in each group. Thus the total number of identifiable plants is
J1 −G1 = 1, 788. The restricted estimates (third column) are formed from estimating
models for movers and non-movers separately, and computed using Equation (18), to-
gether with robust standard-errors. Including 33 normalising restrictions, the ψ̂js can
only be computed for the 1,821 plants, which represents 1,816,368 workers (4,883,331
observations). Each ψ̂j is normalised on the average ψ̂j for its group g. The last two
columns in Table 5 report estimates of the auxiliary regressions shown in Equations (10,
11), whereby estimates of the time-invariant covariates [ui,qj] are recovered, under the
usual assumptions Cov(ui, αi) = Cov(qj, φj) = 0. These are based on the 4,883,331
worker-year observations, i.e. are not aggregated to either the individual- or plant-
level.

All three methods (Spell FE, Spell FEIV, and CMD) give very similar estimates of the
time-varying covariates, which illustrates that the CMD method also gives consistent
estimates of β and γ. However, the estimates of the time-invariant covariates do differ,
probably because the estimates ψ̂j(i,t) used as a dependent variable in the last column
are unreliable, given the discussion on their identification above. The estimates for the
θ̂i regression are much closer to Spell FEIV.

As emphasised repeatedly, the advantage of the CMD method over FE(s) is that es-
timates of θi and ψj are obtained. The means of these two distributions are not
identified, but estimates of their variances are easily computed, as is the correlation
between them. It is the correlation that is particularly interesting, since it estimates
the extent to which unobservably ‘good’ workers are employed in unobservably ‘good’
plants. The correlation between ψ̂j, θ̂i, α̃i = θ̃i − uiη̃ and φ̂j = ψ̂j − qjρ̂ are as follows
(see Equations 12 and 13):

θ̂ ψ̂ α̃ φ̂

θ̂ 1.0000
ψ̂ –0.1907 1.0000
α̃ 0.9580 –0.2323 1.0000
φ̂ –0.2221 0.9486 -0.2587 1.0000
Uses 4,883,331 it observations.

The important finding is that corr(ψ̂, θ̃) = −0.1907. This correlation has the wrong sign
if one expects that unobservably ‘good’ workers would be employed in unobservably
‘good’ plants. However, all of the literature (summarised briefly in the Introduction)
finds a negative correlation, which gives rise to the question as to whether this a
genuine economic phenomenon or whether we there is a technical issue insofar as this
estimate is downwards biased. Our own view is that it is the latter (Andrews, Schank
& Upward 2004), and that the size of the bias decreases with the number of movers
used in estimating each ψ̂j.
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Under the assumptions of the model, we have now consistent estimates of all the
components of the RHS of Equation (4)

yit = xitβ̂ + wjtγ̂ + θ̂i + ψ̂j + ε̂it

where the hat now refers to any consistent estimate (CMD, FEiLSDVj, or AKM’s
DLS). This allows us to analyse the correlations between the observed and unobserved
components of wages, on both sides of the market:

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.1907 1.0000
xitβ̂ 0.0827 0.0329 1.0000
wjtγ̂ 0.0211 -0.3251 -0.0526 1.0000
Uses 4,883,331 it observations.

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.1775 1.0000
xitβ̂ 0.0866 0.0470 1.0000
wjtγ̂ 0.0170 -0.3289 -0.0725 1.0000
Averages to 1,816,368 i observations.

θ̂ ψ̂ xitβ̂ wjtγ̂

θ̂ 1.0000
ψ̂ -0.4653 1.0000
xitβ̂ 0.0803 0.0823 1.0000
wjtγ̂ 0.0897 -0.3641 0.0174 1.0000
Averages to 1,821 j observations.

Even though aggregating information to the plant-level means that estimators remain
consistent, it is noticeable that correlations get bigger in absolute size. Looking at
the it-level correlations, they generally make sense, except for those involving ψ. In
particular, corr(ψ̂,wγ̂) = −0.3251 looks somewhat awry, as well as corr(ψ̂, θ̃) discussed
above. The observed components are uncorrelated with each other, corr(xβ̂,wγ̂) =

−0.0526, which means that ignoring information from one side of the market does
not affect estimates from the other side. All of the other cross-market correlations
are small: corr(θ̂,wγ̂) = 0.0211 and corr(ψ̂,xβ̂) = 0.0329. Also, the unobserved and
observed components of workers’ characteristics are correlated, but weakly so, that is
corr(θ̂,xβ̂) = 0.0827. In short, it is the three correlations that involve ψ̂ that looks
wrong, and confirms these estimates of ψ are often ‘poor’, being identified from plants
that have very little turnover.

To investigate this further, we group all but the smallest 211 plants into one plant. Now
all the plants are connected, i.e. G = 1. Compared with the figures given in Table 2,



24

there are 20,313 movers (62,668 mover observations), 212 plants, and 40,719 spells.
There are fewer movers, because any movement between one small plant and another
is now counted as within-plant movement for this newly formed “plant”. Moreover,
there are now no plants without IAB turnover, and so all the data is used to compute
ψ̂j and θ̂i. The results are reported in Table 6.

One advantage of estimating this model is that we are able to estimate it using FEiLS-
DVj (first three columns), which is the estimator with the best properties because is it
LSDV. This allows us to make two comparisons. The first is to re-estimate the model
using the CMD method (final three columns), thereby compare the two estimation
methods directly. The second is that this CMD method for a model with 212 plants, in
Table 6, can be compared with the same method applied to the model that has 1,821
plants, discussed immediately above and reported in Table 5.

The estimates for the two models are virtually identical to each other, as are the
unrobust standard errors (unrobust standard errors are not reported). This illustrates
clearly that our CMD method is virtually the same as LSDV. The obvious reason why
there are some differences between the two methods is that CMD does not constrain
σε1 = σε2 across the mover and non-mover regressions. In fact, these are estimated as
0.0861 and 0.0676 respectively. Robust standard errors are reported in the table, and
are generally lower than their LSDV counterparts by roughly 30%. This is because
they are able to deal with one source of heteroskedasticity, namely σ̂ε1 > σ̂ε2.20

The correlation between θi and ψj is -0.0172 for both FEiLSDVj and CMD methods.
This is much lower than the -0.1907 estimate that was reported above. This confirms
the main conclusion from Andrews et al. (2004) that the more movers each plant has,
the smaller is the downwards bias in the correlation. Andrews et al. (2004) also develop
formulae for calculating the size of this bias. Thus the estimate is a lower bound: what
we are not able to say is whether the true correlation is zero or positive, but at least
this rules out negative assortative matching.

6 Conclusions

The main objective of this paper is to illustrate that the analysis of matched employee-
employer datasets is more accessible than the investigators might imagine. We then
show how they can be implemented in Stata. We illustrate with examples using linked
employer-employee data from Germany (the Linked IAB data).

There are two points worth emphasising. The first is that investigators who are in-
terested in estimating unobserved worker heterogeneity and unobserved worker hetero-

20Throughout this paper we cluster on j. A more conservative approach would have been to cluster
on i, t, that is report standard robust standard errors.
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geneity, and who have a ‘large’ number of plants, must use ACK’s Direct Least Squares
algorithm. In this paper we explain how the investigator can make the feasible num-
ber of plants as large as possible without having to resort to ACK’s algorithm. Our
CMD method is virtually identical to the ‘correct’ FEiLSDVj method, and only differs
because the error variances are different in the mover and non-mover regressions.

It is important to emphasise that the estimates of ψ̂j rely entirely on workers who
change plants, as in any fixed-effects model. If one has a sample of plants, as here,
there are very few movers (we have 1.9 million workers, but only 23,000 movers). The
estimates on ψ̂j need interpreting with caution. Moreover, we suspect that the negative
correlation usually found in such studies is biased downwards, and this is caused by
standard least-squares sampling error. This issue is investigated in a companion paper
(in preparation).

If investigators are not interested in estimating the worker and firm heterogeneities
themselves, but merely wish to control for them, Spell-level FE is very straightforward
to use.
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Tables

Table 1: Reproducing AKM’s tablea

a

Years in Number of Employers
Sample 1 1a 2 3 4 5 Total Percent
1 532,875 489,896 532,875 27.6 %

1 1
2 479,653 448,502 7,604 487,257 25.2 %

2 2 11
3 282,599 268,095 8,102 197 290,898 15.1 %

3 3 21 111
4 325,833 312,517 5,082 220 0 331,135 17.2 %

4 4 22 112 1111
5 285,907 273,965 2,018 168 2 0 288,095 14.9 %

5 5 23 122 1121 11111
Total 1,906,867 1,792,975 22,806 585 2 0 1,930,260 100.0
Percent 98.8% 92.9% 1.2 % 0.0 % 0.0 % 0.0 % 100.0 %

Table 2: The regression samples

N∗ N J S
Whole sample 5,145,098 1,930,260 4,376 1,953,774

Workers who move to other IAB plants 72,253 23,393 1,821 46,907
Workers who don’t move to other IAB plants 5,072,845 1,906,867 4,376 1,906,867
Workers in plants with movement to other IAB
plants

4,883,331 1,816,368 1,821 1,839,882

Group all plants with fewer than 30 movers into one plant
Workers who move to other IAB plants 62,668 20,313 212 40,719
Workers who don’t move to other IAB plants 5,082,430 1,909,947 212 1,909,947

aFormat of this table copied from Table 1 in Abowd et al. (1999). We report the most common
employment configurations for each cell, which are described in terms of the number of consecutive
years spent with each of the worker’s employers (e.g. configuration 113 means that the worker spent
1 year with his first employer, then 1 year with his second employer and finally 4 years with his third
employer). Column 1a refers to the subset of workers with only one employer whose employing plant
had at least one other worker who had changed plants at least once in his career.
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Table 3: Sample means by individual and plant
IAB IAB

all movers diff all plants turnover diff
log daily wage in Pfennige (lw) 9.7423 9.7750 -0.0327 9.5150 9.6828 -0.1678
non-German nationality (foreign) 0.1086 0.1118 -0.0032 0.0876 0.0990 -0.0114
female (female) 0.2295 0.1665 0.0629 0.3476 0.2739 0.0737
married (married) 0.6064 0.6165 -0.0101 0.4911 0.5726 -0.0815
interaction (marr*fem) 0.1044 0.0614 0.0430 0.1394 0.1196 0.0198
age (age) 39.1673 37.1191 2.0482 38.0608 39.1977 -1.1369
age-squared/100 (age2/100) 16.5498 14.7014 1.8484 15.7159 16.5339 -0.8180
age-cubed/10000 (age3/10000) 7.4582 6.1754 1.2829 6.9683 7.4291 -0.4608
with appren’ship, without A-levels (qual2) 0.6419 0.6387 0.0033 0.7310 0.6660 0.0650
without appren’ship, with A-levels (qual3) 0.0085 0.0063 0.0022 0.0086 0.0075 0.0011
with appren’ship, with A-levels (qual4) 0.0400 0.0400 0.0000 0.0372 0.0393 -0.0021
technical college degree (qual5) 0.0474 0.0720 -0.0246 0.0298 0.0421 -0.0123
university degree (qual6) 0.0527 0.0710 -0.0183 0.0341 0.0432 -0.0091
skilled blue collar (occ2) 0.1786 0.1424 0.0362 0.2034 0.1792 0.0242
highly skilled blue collar (occ3) 0.1433 0.2034 -0.0601 0.0914 0.1248 -0.0334
unskilled white collar (occ4) 0.1303 0.1144 0.0160 0.1947 0.1579 0.0368
skilled white collar (occ5) 0.1929 0.1599 0.0330 0.2607 0.2272 0.0335
highly skilled white collar (occ6) 0.0552 0.0525 0.0028 0.0752 0.0638 0.0114
1 if person has more than one job (mjob) 0.0014 0.0017 -0.0003 0.0019 0.0014 0.0006
1 if stand-alone plant (single) 0.2577 0.2475 0.0102 0.6248 0.4305 0.1942
500.000+(outskirt) (urban2) 0.0486 0.0285 0.0201 0.0809 0.0714 0.0095
100.000-499.999 (center) (urban3) 0.1901 0.1477 0.0424 0.1245 0.1428 -0.0182
100.000-499.999 (outskirt) (urban4) 0.0316 0.0133 0.0183 0.0491 0.0357 0.0134
50.000-99.999 (center) (urban5) 0.0211 0.0152 0.0059 0.0286 0.0313 -0.0027
50.000-99.999 (outskirt) (urban6) 0.0208 0.0151 0.0058 0.0194 0.0236 -0.0042
20.000-49.999 (urban7) 0.1006 0.0912 0.0093 0.1211 0.1104 0.0107
5.000-19.999 (urban8) 0.1117 0.2473 -0.1357 0.1538 0.1395 0.0143
2.000-4.999 (urban9) 0.0170 0.0076 0.0094 0.0434 0.0335 0.0099
below 2.000 (urban10) 0.0078 0.0031 0.0047 0.0286 0.0181 0.0104
electricity, gas & water, mining & quarrying (ind2) 0.0526 0.0967 -0.0441 0.0190 0.0302 -0.0112
manufacturing (without construction) (ind3) 0.7002 0.7502 -0.0500 0.3814 0.5662 -0.1848
construction (ind4) 0.0145 0.0059 0.0086 0.0738 0.0412 0.0326
wholesale and retail trade (ind5) 0.0404 0.0230 0.0174 0.1616 0.0983 0.0633
transport and communciation (ind6) 0.0375 0.0301 0.0073 0.0484 0.0406 0.0078
financial intermediation (ind7) 0.0701 0.0437 0.0264 0.0526 0.0708 -0.0183
other services (ind8) 0.0782 0.0451 0.0331 0.2315 0.1411 0.0904
non-profit org’s and private h’holds (ind9) 0.0017 0.0015 0.0003 0.0089 0.0038 0.0051
regional bodies and social security (ind10) 0.0034 0.0034 -0.0001 0.0048 0.0033 0.0015
log weekly standard hours (excl’g overtime) (lHbar) 3.6070 3.6048 0.0022 3.6412 3.6209 0.0202
firm or sector bargaining (B) 0.4723 0.4898 -0.0175 0.2976 0.3765 -0.0789
sector bargaining (1995ff) (B1) 0.4458 0.4450 0.0009 0.4296 0.4714 -0.0418
firm bargaining (1995ff) (B2) 0.0510 0.0506 0.0005 0.0745 0.0692 0.0053
investment in DM, divided by median inv (inv) 8.5643 3.4075 5.1568 0.5149 1.1743 -0.6594
log concentrarion index (for emply’t) (lconc) -4.6199 -4.3273 -0.2926 -6.8160 -5.7049 -1.1111
plant size [1-4) (size1) 0.0005 0.0000 0.0004 0.1045 0.0009 0.1036
plant size [5,10) (size2) 0.0012 0.0003 0.0010 0.1231 0.0090 0.1141
plant size [10,20) (size3) 0.0029 0.0009 0.0021 0.1102 0.0176 0.0926
plant size [20,50) (size4) 0.0092 0.0050 0.0042 0.1440 0.0628 0.0812
plant size [50,100) (size5) 0.0132 0.0101 0.0031 0.0871 0.0830 0.0041
plant size [100,200) (size6) 0.0267 0.0240 0.0026 0.0896 0.1146 -0.0250
plant size [200,500) (size7) 0.0827 0.1019 -0.0192 0.1261 0.2286 -0.1025
plant size [500,1000) (size8) 0.1056 0.1455 -0.0399 0.0706 0.1485 -0.0779
plant size [1000,5000) (size9) 0.4848 0.5316 -0.0468 0.1308 0.3013 -0.1706
profit ‘good’ (profit2) 0.2037 0.1297 0.0739 0.2565 0.2337 0.0227
profit ‘satisfactory’ (profit3) 0.3772 0.4155 -0.0382 0.3550 0.3455 0.0095
profit ‘just ok’ (profit4) 0.2197 0.2463 -0.0266 0.2162 0.2273 -0.0112
profit ‘bad’ (profit5) 0.1755 0.1791 -0.0035 0.1386 0.1658 -0.0272
vtg*(1-vtgcen)a (vin) 0.7743 0.9064 -0.1320 2.4125 1.6574 0.7551
vin*vin (vinsq) 8.2214 5.9894 2.2320 24.1205 17.6922 6.4283
vtg*(1-vtgcen) (cvin) 15.4860 12.5803 2.9058 9.3528 12.6862 -3.3333
cvin*cvin (cvin2) 275.7671 223.0398 52.7273 1.6772 2.2738 -0.5966
1 if 1994 (year2) 0.2679 0.2438 0.0242 0.2085 0.2375 -0.0290
1 if 1995 (year3) 0.1956 0.1271 0.0685 0.2074 0.2199 -0.0124
1 if 1996 (year4) 0.1713 0.1859 -0.0147 0.2243 0.2147 0.0096
1 if 1997 (year5) 0.1505 0.1934 -0.0429 0.2163 0.1653 0.0510

No. of obs 1,930,260 23,393 4,376 1,821

aWhere vtg is age of the plant and vtgcen is 1 if age is censored, at 20 years.



29

Table 4: Conventional modelsa
a

Pooled OLS
w/o [qj ,wjt] w/o [ui,xit] FE(i) FE(j)

foreign -0.0163 (0.0053) -0.0183 (0.0038) -0.0209 (0.0021)
female -0.1568 (0.0049) -0.1436 (0.0040) -0.1241 (0.0026)
married 0.0401 (0.0050) 0.0375 (0.0031) 0.0058 (0.0019) 0.0419 (0.0015)
marr*fem -0.0723 (0.0041) -0.0689 (0.0032) -0.0037 (0.0027) -0.0641 (0.0023)
age 0.0688 (0.0033) 0.0727 (0.0029) 0.1093 (0.0043) 0.0715 (0.0027)
age2/100 -0.1272 (0.0079) -0.1397 (0.0068) -0.1660 (0.0082) -0.1394 (0.0061)
age3/10000 0.0775 (0.0063) 0.0893 (0.0053) 0.1070 (0.0064) 0.0903 (0.0046)
qual2 0.1009 (0.0046) 0.0977 (0.0041) 0.0140 (0.0050) 0.0858 (0.0031)
qual3 0.1098 (0.0104) 0.0944 (0.0097) -0.0512 (0.0261) 0.0599 (0.0091)
qual4 0.1577 (0.0065) 0.1290 (0.0066) 0.0217 (0.0119) 0.1071 (0.0051)
qual5 0.2385 (0.0064) 0.2221 (0.0062) 0.0467 (0.0089) 0.1957 (0.0046)
qual6 0.2687 (0.0073) 0.2479 (0.0088) 0.0577 (0.0127) 0.2089 (0.0059)
occ2 0.0491 (0.0056) 0.0530 (0.0042) 0.0008 (0.0033) 0.0455 (0.0036)
occ3 0.2277 (0.0050) 0.2327 (0.0051) 0.0357 (0.0042) 0.2249 (0.0059)
occ4 0.0213 (0.0071) 0.0465 (0.0055) -0.0046 (0.0030) 0.0370 (0.0043)
occ5 0.1942 (0.0063) 0.1992 (0.0042) 0.0185 (0.0045) 0.1835 (0.0039)
occ6 0.2230 (0.0075) 0.2660 (0.0058) 0.0351 (0.0043) 0.2731 (0.0053)
mjob -0.0672 (0.0090) -0.0580 (0.0072) -0.0193 (0.0042) -0.0509 (0.0083)
single -0.0242 (0.0082) -0.0206 (0.0064) -0.0081 (0.0091)
ind2 0.1888 (0.0347) 0.1303 (0.0349) 0.0441 (0.0793)
ind3 0.1610 (0.0307) 0.1282 (0.0326) 0.0622 (0.0776)
ind4 0.2346 (0.0329) 0.1845 (0.0341) -0.0016 (0.0815)
ind5 0.0563 (0.0351) 0.0486 (0.0347) 0.0060 (0.0784)
ind6 0.1036 (0.0326) 0.0631 (0.0341) 0.0004 (0.0815)
ind7 0.2577 (0.0312) 0.1781 (0.0327) 0.0449 (0.0788)
ind8 0.1258 (0.0326) 0.0517 (0.0337) 0.0039 (0.0780)
ind9 0.0635 (0.0479) -0.0190 (0.0419) 0.0392 (0.0803)
ind10 0.1658 (0.0499) 0.0818 (0.0423) 0.0410 (0.0817)
lHbar -0.4735 (0.1448) -0.3831 (0.0927) -0.0605 (0.2583) -0.0721 (0.2001)
B -0.0343 (0.0292) -0.0076 (0.0203) -0.0053 (0.0093) -0.0016 (0.0054)
B1 -0.0506 (0.0379) -0.0245 (0.0250) 0.0004 (0.0078) 0.0085 (0.0059)
B2 -0.0481 (0.0384) -0.0182 (0.0257) -0.0185 (0.0102) -0.0100 (0.0077)
inv -0.0002 (0.0002) -0.0002 (0.0001) 0.0001 (0.0000) 0.0001 (0.0000)
lconc 0.0005 (0.0032) 0.0035 (0.0023) -0.0044 (0.0027) -0.0021 (0.0024)
size1 -0.5932 (0.0351) -0.5149 (0.0276) -0.0818 (0.0225) -0.0280 (0.0243)
size2 -0.4246 (0.0265) -0.3513 (0.0213) -0.0702 (0.0176) -0.0030 (0.0180)
size3 -0.3038 (0.0237) -0.2517 (0.0184) -0.0565 (0.0163) 0.0073 (0.0156)
size4 -0.2341 (0.0201) -0.1964 (0.0158) -0.0455 (0.0139) 0.0143 (0.0126)
size5 -0.1992 (0.0203) -0.1633 (0.0155) -0.0328 (0.0115) 0.0199 (0.0111)
size6 -0.1665 (0.0173) -0.1334 (0.0134) -0.0228 (0.0102) 0.0117 (0.0096)
size7 -0.1217 (0.0154) -0.0948 (0.0125) -0.0107 (0.0096) 0.0130 (0.0087)
size8 -0.1017 (0.0157) -0.0809 (0.0127) -0.0039 (0.0082) 0.0072 (0.0072)
size9 -0.0681 (0.0139) -0.0607 (0.0115) 0.0004 (0.0074) 0.0045 (0.0064)
profit2 -0.0350 (0.0153) -0.0163 (0.0111) -0.0015 (0.0042) -0.0033 (0.0031)
profit3 -0.0448 (0.0168) -0.0260 (0.0116) -0.0067 (0.0046) -0.0082 (0.0034)
profit4 -0.0259 (0.0174) -0.0134 (0.0129) -0.0078 (0.0051) -0.0091 (0.0038)
profit5 -0.0440 (0.0180) -0.0400 (0.0125) -0.0094 (0.0061) -0.0114 (0.0045)
vin -0.0093 (0.0052) -0.0035 (0.0037) -0.0054 (0.0021) 0.0159 (0.0020)
vinsq 0.0003 (0.0003) 0.0001 (0.0002) 0.0001 (0.0001) 0.0002 (0.0001)
cvin -0.0093 (0.0041) -0.0051 (0.0029) -0.0018 (0.0020) -0.0058 (0.0278)
cvin2 0.0004 (0.0002) 0.0002 (0.0001) 0.0000 (0.0001) 0.0007 (0.0008)
year2 0.0198 (0.0079) 0.0225 (0.0062) 0.0164 (0.0052) -0.0047 (0.0048) 0.0012 (0.0030)
year3 0.0467 (0.0105) 0.0734 (0.0312) 0.0656 (0.0207) 0.0123 (0.0037) 0.0155 (0.0031)
year4 0.0673 (0.0105) 0.0894 (0.0318) 0.0777 (0.0212) 0.0060 (0.0023) 0.0094 (0.0018)
year5 0.0793 (0.0103) 0.1035 (0.0327) 0.0866 (0.0217)
cons 8.3740 (0.0533) 11.5001 (0.5287) 9.7534 (0.3449) 7.5951 (0.9940) 8.5528 (0.8486)
psihat

No. of obs 5,145,098 5,145,098 5,145,098 5,145,098 5,145,098
No. of workers 1,930,260 1,930,260 1,930,260 1,930,260 1,930,260
No. of plants 4,376 4,376 4,376 4,376 4,376
No. of spells

‘corr(ui,Xb)’ not applic not applic not applic -0.6591 0.0773
σθ or σψ not applic not applic not applic 0.3529 0.2968
σε 0.2015 0.2610 0.1895 0.0680 0.1687

a 6 urbanicity dummies also included (not reported to save space). For all regressions, we report robust standard errors adjusted for
clustering on firms.
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Table 5: Double heterogeneity modelsa
a

CMD method
Spell FE Spell FEIV Restricted bθ bψ

foreign -0.1091 (0.0024) -0.1140 (0.0054)
female -0.1360 (0.0020) -0.1407 (0.0059)
married 0.0056 (0.0020) 0.0056 (0.0002) 0.0056 (0.0020)
marr*fem -0.0036 (0.0028) -0.0036 (0.0004) -0.0036 (0.0026)
age 0.1035 (0.0045) 0.1035 (0.0004) 0.0871 (0.0327)
age2/100 -0.1643 (0.0084) -0.1643 (0.0009) -0.1649 (0.0077)
age3/10000 0.1060 (0.0065) 0.1057 (0.0008) 0.1061 (0.0059)
qual2 0.0108 (0.0053) 0.0108 (0.0008) 0.0113 (0.0052)
qual3 -0.0615 (0.0313) -0.0615 (0.0025) -0.0571 (0.0153)
qual4 0.0157 (0.0160) 0.0157 (0.0018) 0.0174 (0.0156)
qual5 0.0518 (0.0118) 0.0518 (0.0017) 0.0479 (0.0080)
qual6 0.0632 (0.0158) 0.0632 (0.0020) 0.0586 (0.0115)
occ2 0.0010 (0.0034) 0.0010 (0.0004) 0.0012 (0.0029)
occ3 0.0359 (0.0043) 0.0359 (0.0005) 0.0363 (0.0038)
occ4 -0.0035 (0.0031) -0.0035 (0.0005) -0.0035 (0.0026)
occ5 0.0193 (0.0045) 0.0193 (0.0006) 0.0194 (0.0041)
occ6 0.0354 (0.0043) 0.0354 (0.0008) 0.0358 (0.0034)
mjob -0.0208 (0.0044) -0.0208 (0.0015) -0.0202 (0.0045)
single -0.0652 (0.0022) -0.0256 (0.0081)
ind2 0.1903 (0.0213) 0.1243 (0.0706)
ind3 0.2140 (0.0208) 0.1393 (0.0694)
ind4 0.1685 (0.0217) 0.1182 (0.0731)
ind5 0.0958 (0.0209) 0.0278 (0.0703)
ind6 0.1749 (0.0212) 0.0855 (0.0721)
ind7 0.3407 (0.0212) 0.1269 (0.0703)
ind8 0.1631 (0.0207) 0.0490 (0.0709)
ind9 0.0823 (0.0273) -0.0188 (0.0786)
ind10 0.2525 (0.0246) 0.0489 (0.0856)
lHbar -0.0564 (0.2645) -0.0564 (0.0016) -0.0563 (0.1063)
B -0.0064 (0.0090) -0.0064 (0.0004) -0.0064 (0.0082)
B1 -0.0002 (0.0078) -0.0002 (0.0004) -0.0001 (0.0067)
B2 -0.0187 (0.0101) -0.0187 (0.0004) -0.0187 (0.0086)
inv 0.0001 (0.0000) 0.0001 (0.0000) 0.0001 (0.0000)
lconc -0.0059 (0.0030) -0.0059 (0.0001) -0.0059 (0.0025)
size1 -0.0721 (0.0232) -0.0721 (0.0052) -0.0719 (0.0220)
size2 -0.0614 (0.0184) -0.0614 (0.0034) -0.0613 (0.0166)
size3 -0.0516 (0.0171) -0.0516 (0.0019) -0.0514 (0.0148)
size4 -0.0391 (0.0146) -0.0391 (0.0013) -0.0389 (0.0138)
size5 -0.0272 (0.0124) -0.0272 (0.0010) -0.0272 (0.0114)
size6 -0.0192 (0.0112) -0.0192 (0.0007) -0.0193 (0.0102)
size7 -0.0099 (0.0105) -0.0099 (0.0005) -0.0099 (0.0096)
size8 -0.0026 (0.0090) -0.0026 (0.0004) -0.0026 (0.0079)
size9 0.0021 (0.0080) 0.0021 (0.0003) 0.0021 (0.0069)
profit2 -0.0020 (0.0043) -0.0020 (0.0002) -0.0019 (0.0039)
profit3 -0.0072 (0.0047) -0.0072 (0.0002) -0.0072 (0.0045)
profit4 -0.0082 (0.0053) -0.0082 (0.0003) -0.0082 (0.0050)
profit5 -0.0099 (0.0062) -0.0099 (0.0003) -0.0098 (0.0058)
vin 0.0165 (0.0324)
vinsq 0.0001 (0.0001) 0.0001 (0.0000) 0.0001 (0.0001)
cvin -0.0160 (0.0354) -0.0160 (0.0021)
cvin2 0.0005 (0.0010) 0.0005 (0.0001) 0.0005 (0.0009)
year2 -0.0032 (0.0037) -0.0032 (0.0002) -0.0032 (0.0031)
year3 0.0140 (0.0041) 0.0140 (0.0003) 0.0141 (0.0036)
year4 0.0073 (0.0024) 0.0073 (0.0002) 0.0073 (0.0024)
year5
cons 7.8941 (1.1414) 7.7591 (0.0257) 8.3224 (0.0062) -0.1118 (0.0695)

No. of obs. 5,145,098 5,145,098 5,145,098 4,883,331 4,883,331
No. of workers 1,930,260 1,930,260 1,930,260 1,816,368 1,816,368
No. of plants 4,376 4,376 4,376 1,821 1,821
No. of spells 1,953,774 1,953,774

‘corr(ui,Xb)’ -0.5625
σλ 0.3220
σε 0.0675 0.2212 0.1122

a 6 urbanicity dummies also included (not reported to save space). For Spell FE, Pooled CMD, and the auxiliary regressions for bθi

and bψj , we report robust standard errors adjusted for clustering on plants. Stata does not give robust standard errors for its IV GLS
routine. See text for how robust standard errors are computed for Pooled CMD.
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Table 6: Models with only 212 large plantsa
a

FEiLSDVj CMD method
thetahat psihat Restricted bθ bψ

foreign -0.1106 (0.0076) -0.1105 (0.0076)
female -0.1148 (0.0068) -0.1147 (0.0068)
married 0.0057 (0.0020) 0.0057 (0.0014)
marr*fem -0.0036 (0.0028) -0.0036 (0.0021)
age 0.1068 (0.0042) 0.1066 (0.0036)
age2/100 -0.1656 (0.0082) -0.1653 (0.0075)
age3/10000 0.1067 (0.0064) 0.1064 (0.0057)
qual2 0.0130 (0.0049) 0.0128 (0.0042)
qual3 -0.0516 (0.0261) -0.0529 (0.0137)
qual4 0.0195 (0.0122) 0.0196 (0.0063)
qual5 0.0459 (0.0089) 0.0475 (0.0064)
qual6 0.0560 (0.0123) 0.0577 (0.0084)
occ2 0.0011 (0.0033) 0.0011 (0.0022)
occ3 0.0358 (0.0042) 0.0358 (0.0034)
occ4 -0.0046 (0.0029) -0.0044 (0.0020)
occ5 0.0183 (0.0044) 0.0186 (0.0033)
occ6 0.0348 (0.0041) 0.0348 (0.0032)
mjob -0.0196 (0.0042) -0.0196 (0.0041)
single -0.0169 (0.0062) -0.0170 (0.0062)
ind2 0.0141 (0.0108) 0.0143 (0.0108)
ind3 0.0251 (0.0108) 0.0253 (0.0108)
ind4 0.0073 (0.0091) 0.0073 (0.0092)
ind5 -0.0044 (0.0107) -0.0044 (0.0107)
ind6 0.0058 (0.0139) 0.0060 (0.0139)
ind7 0.0140 (0.0109) 0.0139 (0.0109)
ind8 0.0085 (0.0111) 0.0084 (0.0111)
ind9 0.0017 (0.0096) 0.0016 (0.0097)
ind10 -0.0038 (0.0304) -0.0036 (0.0304)
lHbar -0.0594 (0.2618) -0.0589 (0.0655)
B -0.0053 (0.0093) -0.0054 (0.0076)
B1 0.0006 (0.0078) 0.0006 (0.0065)
B2 -0.0182 (0.0102) -0.0181 (0.0073)
inv 0.0001 (0.0000) 0.0001 (0.0000)
lconc -0.0045 (0.0028) -0.0047 (0.0012)
size1 -0.0811 (0.0226) -0.0802 (0.0148)
size2 -0.0702 (0.0179) -0.0693 (0.0127)
size3 -0.0567 (0.0167) -0.0564 (0.0112)
size4 -0.0453 (0.0142) -0.0450 (0.0104)
size5 -0.0322 (0.0120) -0.0321 (0.0090)
size6 -0.0220 (0.0107) -0.0219 (0.0079)
size7 -0.0112 (0.0101) -0.0111 (0.0074)
size8 -0.0030 (0.0088) -0.0030 (0.0067)
size9 0.0021 (0.0079) 0.0021 (0.0058)
profit2 -0.0019 (0.0043) -0.0019 (0.0029)
profit3 -0.0072 (0.0047) -0.0072 (0.0034)
profit4 -0.0081 (0.0052) -0.0081 (0.0035)
profit5 -0.0098 (0.0062) -0.0097 (0.0041)
vin -0.0029 (0.0021) -0.0031 (0.0017)
vinsq 0.0001 (0.0001) 0.0001 (0.0001)
cvin -0.0003 (0.0020) -0.0005 (0.0014)
cvin2 0.0000 (0.0001) 0.0000 (0.0001)
year2 -0.0047 (0.0048) -0.0046 (0.0019)
year3 0.0124 (0.0036) 0.0123 (0.0027)
year4 0.0060 (0.0023) 0.0060 (0.0015)
year5
cons 7.7096 (0.0057) -0.0066 (0.0103) 7.7092 (0.0057) -0.0064 (0.0104)

No. of obs. 5,145,098 5,145,098 5,145,098 5,145,098 5,145,098 5,145,098
No. of workers 1,930,260 1,930,260 1,930,260 1,930,260 1,930,260 1,930,260
No. of plants 212 212 212 212 212 212

σε 0.0675 0.3145 0.0501 0.3105 0.0463

a 6 urbanicity dummies also included (not reported to save space). For the regressions we report robust standard errors adjusted for
clustering on plants.
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Figure 1: Distribution function of numbers of movers for each plant
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